On the limit of single-walled carbon nanotube random network conductivity

نویسندگان

  • Kimmo Mustonen
  • Esko I. Kauppinen
  • Albert G. Nasibulin
چکیده

Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Kimmo Mustonen Name of the doctoral dissertation On the limit of single-walled carbon nanotube random network conductivity Publisher School of Science Unit Department of Applied Physics Series Aalto University publication series DOCTORAL DISSERTATIONS 194/2015 Field of research Nanomaterials Manuscript submitted 5 October 2015 Date of the defence 7 December 2015 Permission to publish granted (date) 4 November 2015 Language English Monograph Article dissertation (summary + original articles) Abstract Single-walled carbon nanotubes (SWCNTs) are one of the most interesting emerging materials for practical applications. As transparent conductive films (TCFs) and thin film transistors (TFTs) they provide prospects for both improved flexibility and conductivity over established metal oxide and silicon-based materials. Technologically crucial performance optimizations, however, require a coherent picture how the SWCNT network properties, specifically sheet conductance, absorbance and spatial uniformity, emerge from individual nanotubes.Single-walled carbon nanotubes (SWCNTs) are one of the most interesting emerging materials for practical applications. As transparent conductive films (TCFs) and thin film transistors (TFTs) they provide prospects for both improved flexibility and conductivity over established metal oxide and silicon-based materials. Technologically crucial performance optimizations, however, require a coherent picture how the SWCNT network properties, specifically sheet conductance, absorbance and spatial uniformity, emerge from individual nanotubes. Here, a new kind of floating catalyst approach based on a spark discharge generator (SDG) is presented for the synthesis of predominantly individual SWCNTs in the gas phase. In this process, Brownian diffusion is identified as the major cause behind nanotube gas-phase aggregation (bundling). This can be avoided by limiting the SWCNT number concentration down to ~10 cm, yielding a high fraction of 60-80% of individual tubes on substrates. For mostly individual 3-4 μm long SWCNTs, the observed aggregation rate matches a mobility diameter of 20 nm. The synthesized tubes exhibit a pre-eminence of near-armchair chiralities, up to 70% having chiral angles ≥20°, with an unconventionally high fraction of semiconducting tube species, 80%, at a growth temperature of 750 °C. Furthermore, by optical and electrical characterization of networks fabricated from individual tubes and small diameter bundles, unambiguous experimental evidence of the detrimental nature of SWCNT bundling on TCF performance is found. The performance loss is explained to be due to gratuitous absorbance in large diameter bundles, without a compensating conductivity gain. An absorbance-conductance model is presented, assuming that the Beer-Lambert law applies independent of the TCFs’ internal geometry, whereas at room temperature a significant charge carrier transport is allowed only through metallic-metallic tube junctions. The maximum network conductivity is expected where the nanotube lengthwise resistances between the junctions become as large as the junction resistances, providing the ultimate performance limit for metallicity-mixed SWCNT networks of 80 Ω/☐ at 90% transparency. For all-metallic and doped networks, the limit is expected at 25 Ω/☐. In correspondence, nitric acid treated TCFs fabricated using individual 4 μm long SWCNTs are demonstrated with a sheet resistance of 63 Ω/☐ at 90% transparency. Finally, random-network TFTs fabricated from the individual tubes approach the uniformity of ideal computer-simulated systems. The TFTs exhibit On/Off current ratios between 10 and 10 and simultaneous charge carrier mobilities up to 100 cm Vs combined with a fabrication yield of >99%. The normalized On-current shows standard deviation of ~25%, showing unprecedently high uniformity for random network TFTs. !

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Thermal Conductivity of Carbon Nanotube/Polypropylene Nanocomposites by Finite Element Method

In this paper, finite element method is used to obtain thermal conductivity coefficients of single-walled carbon nanotube reinforced polypropylene. For this purpose, the two-dimensional representative volume elements are modeled. The effect of different parameters such as nanotube dispersion pattern, nanotube volume percentage in polymer matrix, interphase thickness between nanotube and surroun...

متن کامل

Single Walled Carbon Nanotube Effects on Mixed Convection heat Transfer in an Enclosure: a LBM Approach

The effects of Single Walled Carbon Nanotube (SWCNT) on mixed convection in a cavity are investigated numerically. The problem is studied for different Richardson numbers (0.1-10), volume fractions of nanotubes (0-1%), and aspect ratio of the cavity (0.5-2.5) when the Grashof number is equal to 103. The volume fraction of added nanotubes to Water as base fluid are lowers than 1% to make dilute ...

متن کامل

Modeling of the adsorption kinetics of Basic Red 46 on single-walled carbon nanotube and carboxylate group functionalized single-walled carbon nanotube

The present study was carried out to investigate the potential of single-walled carbon nanotube (SWCNTs) and carboxylate group functionalized single-walled carbon nanotube (SWCNT-COOH) as alternative adsorbents for the removal of Basic Red 46 (BR 46) from contaminated water by using batch adsorption studies. Effects of some key operating parameters such as pH, ionic strength and contact time on...

متن کامل

Dynamic Stability of Single Walled Carbon Nanotube Based on Nonlocal Strain Gradient Theory

This paper deals with dynamic Stability of single walled carbon nanotube. Strain gradient theory and Euler-Bernouli beam theory are implemented to investigate the dynamic stability of SWCNT embedded in an elastic medium. The equations of motion were derived by Hamilton principle and non-local elasticity approach. The nonlocal parameter accounts for the small-size effects when dealing with nano-...

متن کامل

Postbuckling Equilibrium Path of a Long Thin-Walled Cylindrical Shell (Single-Walled Carbon Nanotube) under Axial Compression Using Energy Method

In this paper, an elastic shell model is presented for postbuckling prediction of a long thinwalledcylindrical shell under axial compression. The Ritz method is applied to solve the governingequilibrium equation of a cylindrical shell model based on the von-Karman type nonlinear differentialequations. The postbuckling equilibrium path is obtained using the energy method for a long thin-walledcy...

متن کامل

A DFT study of interaction of folic acid drug on functionalized single-walled Carbon Nanotubes

In this work, the structural and electronic properties of folic acid molecule on functionalized (7,0)zigzag single-walled carbon nanotube was studied in gas phase on the basis of density functionaltheory (DFT). Furthermore, covalent interaction of folic acid with single-walled carbon nanotube wasinvestigated and its quantum molecular descriptors and binding energies were calculated. The DFTB3LY...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015